Гемоглобин. Гемоглобин - основной белок крови Строение и функции гемоглобина кратко

Одной из важнейших функций крови является перенос поглощаемого в легких кислорода к органам и тканям и транспорт углекислого газа в обратном направлении.

Ключевую роль в этом процессе играют эритроциты, благодаря содержанию в них красного кровяного пигмента ― гемоглобина.

Внутриэритроцитарная локализация Нb:

    Обеспечивает уменьшение вязкости крови.

    Уменьшает онкотическое давление, предотвращая потерю воды тканями.

    Предупреждает потерю Нb при фильтрации крови в почках.

По химической природе ― это хромопротеид, состоящий из белка глобина (96%) и простетическая группы гема (4%). Гема содержится 4 группы. Он представляет собой протопорфирин, в центре которого расположен ион Fe ++ .

Ключевую роль в деятельности Нb играет ион Fe ++ .

Функции гемоглобина:

    Транспорт О 2 в виде оксигемоглобина (HHbO 2). Одна молекула Нb присоединяет 4 молекулы кислорода. 1 г Нb связывает 1,34 мл О 2 .

    Транспорт СО 2.

    Участвует в поддержании кислотно-щелочного состояния (гемоглобиновый буфер).

Соединения Нb:

1. Оксигемоглобин (НHbО 2). Гемоглобин, присоединивший 4О 2 . В артериальной крови его содержится около 98%, а в венозной - около 60%. После отдачи О 2 НHb получил название восстановленный, редуцированный гемоглобин или дезоксигемоглобин). Гемоглобин обладает высоким сродством к кислороду.

2. Карбогемоглобин (НHbСО 2) ― соединение гемоглобина с СО 2 .

3. Метгемоглобин (MetHb). Образуется под влиянием сильных оки-слителей (перманганат калия, анилин, нитриты, пирогаллол и др). При этом Fe ++ превращается в Fe +++ . Соединение прочное.

4. Карбоксигемоглобин (НHbCО) ― соединение гемоглобина с угарным газом (СО). Соединение в 150 - 200 раз прочнее НHbО 2 . При содержании во вдыхаемом воздухе 0,1% СО 80% Нb превращается в карбоксигемоглобин. При содержании 1% ― гибель через несколько минут.

Физиологическими соединениями Hb являются оксигемоглобин и карбогемоглобин.

Миоглобин ― дыхательный пигмент или мышечный гемоглобин ― содержится в скелетных мышцах, миокарде. Обладает большим сродством к кислороду по сравнению с гемоглобином. Связывает до 14%О 2 в организме. Его роль заключается в обеспечении кислородом мышцу в период ее сокращения, когда происходит пережатие капилляров и кровоток через ткань прекращается. В этот период главным источником кислорода является миоглобин, который затем в фазу расслабления мышц и восстановления кровотока опять «запасается» кислородом.

Синтез Нb происходит в эритробластах и нормобластах в костном мозге.

Состояние сниженного количества Hb в единице объема крови (чаще всего при одновременном снижении количества эритроцитов) получило название анемия.

Анемия для мужчин при содержании Hb меньше 130 г/л, для женщин ― меньше 120 г/л (при беременности ― меньше 110 г/л).

Разновидности Hb:

    HbP ― (примитивный) ― на 7-12 неделе внутриутробного развития.

    HbF ― фетальный (плодный) ― на 9-й неделе внутриутробного развития.

    HbA ― гемоглобин взрослых ― появляется перед рождением.

НbF ― обладает большим сродством с О 2 и насыщается на 60% при таком рО 2 , когда HbA матери только на 30%. Благодаря данному свойству HbF вполне обеспечивает кислородом ткани плода в условиях сравнительно низкого рО 2 в артериальной крови плода. В течение 1 года жизни HbF почти полностью заменяется HbA.

  • 11. Обезвреживание билирубина печенью. Формула конъюгированного (прямого) билирубина
  • 12. Нарушения обмена билирубина. Гипербилирубинемия и ее причины.
  • 13. Желтухи, причины. Типы желтух. Желтуха новорожденного
  • 2. Печёночно-клеточная (печёночная) желтуха
  • 14. Диагностическое значение определения концентрации билирубина в биологических жидкостях человека при различных типах желтух
  • 15. Белки сыворотки крови. Общее содержание, функции. Отклонение в содержании общего белка сыворотки крови, причины
  • Нормальные значения общего белка сыворотки крови
  • Клиническое значение определения общего белка сыворотки крови
  • Гиперпротеинемия
  • Гипопротеинемия
  • 19)Белки острой фазы, представители, диагностическое значение
  • 20)Ренин-ангиотензивная система, состав, физиологическая роль
  • Вопрос 26. Противосвертывающая система крови. Основные первичные и вторичные природные антикоагулянты крови.
  • Вопрос 27. Фибринолитическая система крови. Механизм действия.
  • Вопрос 28. Нарушения процессов свертывания крови. Тромботические и геморрагические состояния. Двс – синдром.
  • Вопрос 29. Остаточный азот крови. Понятие, компоненты, содержание в норме. Азотемия, типы, причины возникновения.
  • Вопрос 30. Обмен железа: всасывание, транспорт кровью, депонирование. Роль железа в процессах жизнедеятельности.
  • 31. Тетрагидрофолиевая кислота, роль в синтезе и использовании одно­углеродных радикалов. Метилирование гомоцистеина.
  • 32. Недостаточность фолиевой кислоты и витамина в12. Антивитамины фолиевой кислоты. Механизм действия сульфаниламидных препаратов.
  • 34. Фенилкетонурия, биохимический дефект, проявление болезни, диаг­ностика, лечение.
  • 35. Алкаптонурия, альбинизм. Биохимический дефект, проявление бо­лезней.
  • 36. Распределение воды в организме. Водно-электролитное пространства организма, их состав.
  • 37. Роль воды и минеральных веществ в процессах жизнедеятельности
  • 38. Регуляция водно-электролитного обмена. Строение и функции альдостерона, вазопрессина и ренин-ангиотензиновой системы, механизм регулирующего действия
  • 39. Механизмы поддержания объема, состава и pH жидкостей организма.
  • 40. Гипо- и гипергидратация водно-элетролитных пространств. Причины возникновения.
  • 45.Нарушения кислотно-основного состояния. Типы нарушений. Причины и механизмы¬возникновения ацидоза и алкалоза
  • 46.Роль печени в процессах жизнедеятельности.
  • 47. Метаболическая функция печени (роль в обмене углеводов, липидов, аминокислот).
  • 48. Метаболизм эндогенных и чужеродных токсических веществ в печени: микросомальное окисление, реакции конъюгации
  • 49. Обезвреживание шлаков, нормальных метаболитов и биологически активных веществ в печени. Обезвреживание продуктов гниения
  • 50. Механизм обезвреживания чужеродных веществ в печени.
  • 51. Металлотионеин, обезвреживание ионов тяжелых металлов в печени. Белки теплового шока.
  • 52.Токсичность кислорода. Образование активных форм кислорода.
  • 53. ПОнятие о перекисном окислении липидов, повреждение мембран в результате перекисного окисления липидов.
  • 54. . Механизмы защиты от токсического действия кислорода.Антиоксидатная система.
  • 55. Основы химического канцерогенеза. Понятие о химических канцерогенах.
  • 4.Гемоглобин, строение, свойства, биологическая роль

    Гемоглобин взрослого организма является тетрамером, состоящим из двух α- и двух β-субьединиц с молекулярными массами примерно 16 кДа. α- и β-цепи отличаются аминокислотной последовательностью, но имеют сходную конформацию. Каждая субъединица несет группу гема с ионом двухвалентного железа в центре. Содержание Hb в крови составляет 140-180 г/л у мужчин и 120-160 г/л у женщин, т. е. вдвое выше по сравнению с белками плазмы (50-80 г/л). Поэтому Hb вносит наибольший вклад в образование рН-буферной емкости крови.

    Гемоглобин в качестве белкового компонента содержит глобин, а небелкового – гем. Видовые различия гемоглобина обусловлены глобином, в то время как гем одинаков у всех видов гемоглобина. Основу структуры простетической группы большинства гемосодержащих белков составляет порфириновое кольцо, являющееся в свою очередь производным тетрапиррольного соединения – порфирина.

    Атом железа расположен в центре гема-пигмента, придающего крови характерный красный цвет. Каждая из 4 молекул гема «обернута» одной полипептидной цепью. В молекуле гемоглобина взрослого человека HbА содержатся четыре полипептидные цепи, которые вместе составляют белковую часть молекулы – глобин. Две из них, называемые α-цепями, имеют одинаковую первичную структуру и по 141 аминокислотному остатку. Две другие, обозначаемые β-цепями, также идентично построены и содержат по 146 аминокислотных остатков. Таким образом, вся молекула белковой части гемоглобина состоит из 574 аминокислот. Во многих положениях α- и β-цепи содержат разные аминокислотные последовательности, хотя и имеют почти одинаковые пространственные структуры. Получены доказательства, что в структуре гемоглобинов более 20 видов животных 9 аминокислот в последовательности оказались одинаковыми, консервативными (инвариантными), определяющими функции гемоглобинов; некоторые из них находятся вблизи гема, в составе участка связывания с кислородом, другие – в составе неполярной внутренней структуры глобулы.

    2α цепи и 2β цепи-96%

    3.Особенности строения, развития и метаболизма эритроцита.

    Эритроциты - высокоспециализированные клетки, которые переносят кислород от лёгких к тканям и диоксид углерода, образующийся при метаболизме, из тканей к альвеолам лёгких. Транспорт О2 и СО2 в этих клетках осуществляет гемоглобин, составляющий 95% их сухого остатка.

    Дифференцировка эритроцитов-эритроцит готовится стать собой 2 недели.

    Интерлейкин-3 синтезируется Т-лимфоцитами, а также клетками костного мозга. Это низкомолекулярный белок группы цитокинов - регуляторов роста и дифференцировки клеток.

    Дальнейшую пролиферацию и дифференцировку унипотентной клетки эритроидного ряда регулирует синтезирующийся в почках гормон эритропоэтин .

    В процессе дифференцировки на стадии эритробласта происходят интенсивный синтез гемоглобина, конденсация хроматина, уменьшение размера ядра и его удаление. Образующийся ретикулоцит ещё содержит глобиновую мРНК и активно синтезирует гемоглобин. Циркулирующие в крови ретикулоциты лишаются рибосом, ЭР, митохондрий и в течение двух суток превращаются в эритроциты.

    Строение. Строение спектрина (А), околомембранного белкового комплекса (Б) и цитоскелета эритроцитов (В). Каждый димер спектрина состоит из двух антипараллельных, нековалентносвязанных между собой α- и β-полипептидных цепей (А). Белок полосы 4.1 образует со спетрином и актином "узловой комплекс", который посредством белка полосы 4.1 связывается с цитоплазматическим доменом гликофорина. Анкирин соединяет спектрин с основным интегральным белком плазматической мембраны - белком полосы 3 (Б). На цитоплазматической поверхности мембраны эритроцита имеется гибкая сетеобразная структура, состоящая из белков и обеспечивающая пластичность эритроцита при прохождении им через мелкие капилляры (В).

    Важненько:Интегральный гликопротеин гликофорин присутствует только в плазматической мембране эритроцитов. К N-концевой части белка, расположенной на наружной поверхности мембраны, присоединено около 20 олигосахаридных цепей. Олигосахариды гликофорина - антигенные детерминанты системы групп крови АВО .

    Спектрин - периферический мембранный белок, нековалентно связанный с цитоплазматической поверхностью липидного бислоя мембраны,является основным белком цитоскелета эритроцитов . Спектрин состоит из α- и β-полипептидных цепей, имеющих доменное строение; α- и β-цепи димера расположены антипараллельно, перекручены друг с другом и нековалентно взаимодействуют во многих точках. Спектрин может прикрепляться к мембране и с помощью белка анкирина . Этот крупный белок соединяется с β-цепью спектрина и цитоплазматическим доменом интегрального белка мембраны - белка полосы 3(белок-переносчик ионов С1- и НСО3- через плазматическую мембрану эритроцитов по механизму пассивного антипорта ) . Анкирин не только фиксирует спектрин на мембране , но и уменьшает скорость диффузии белка полосы 3 в липидном слое.

    Метаболизм

    Метаболизм глюкозы

    Эритроциты лишены митохондрий, поэтому в качестве энергетического материала они могут использовать только глюкозу. Глюкоза поступает в эритроциты путём облегчённой диффузии с помощью ГЛЮТ-2. Около 90% поступающей глюкозы используется в анаэробном гликолизе, а остальные 10% - в пентозофосфатном пути.

    Важная особенность анаэробного гликолиза в эритроцитах по сравнению с другими клетками - присутствие в них фермента бисфосфоглицератмутазы. Бисфосфоглицератмутаза катализирует образование 2,3-бисфосфоглицерата(служит важным аллостерическим регулятором связывания кислорода гемоглобином) из 1,3-бисфосфоглицерата..

    Глюкоза в эритроцитах используется и в пентозофосфатном пути, окислительный этап которого обеспечивает образование кофермента NADPH, необходимого для восстановления глутатиона.

    Обезвреживание кислорода

    Большое содержание кислорода в эритроцитах определяет высокую скорость образования супероксидного анион-радикала (О2-), пероксида водорода (Н2О2) и гидроксил радикала (ОН.). Эритроциты содержат ферментативную систему, предотвращающую токсическое действие активных форм кислорода и разрушение мембран эритроцитов. Постоянный источник активных форм кислорода в эритроцитах - неферментативное окисление гемоглобина в метгемоглобин:

    Метгемоглобинредуктазная сисгема состоит из цитохрома B5 и флавопротеина цитохром B5 редуктазы , донором водорода для которой служит NADH, образующийся в глицеральдегиддегидрогеназной реакции гликолиза

    Цитохром B5 восстанавливает Fe3+ метгемог-лобина в Fe2+:

    Hb-Fe3+ + цит. b5 восст. → HbFe2+ + цит. b5 ок. .

    Цит. B5 ок + NADH → цит. B5 восст. + NAD+.

    Супероксидный анион с помощью фермента супероксидцисмутазы превращается в пероксид водорода:

    O2- + O2- + Н+ → H2О2 + O2 .

    Пероксид водорода разрушается каталазой и содержащим селен ферментом глутатионпероксидазой. Донором водорода в этой реакции служит глутатион - трипептид глутамилцистеинилглицин (GSH) (см. раздел 12).

    2Н2О → 2Н2О + О2; 2GSH + 2Н2О2 → GSSG + 2Н2О.

    Окисленный глутатион (GSSG) восстанавливается NADPH-зависимой глутатионредуктазой. Восстановление NADP для этой реакции обеспечивают окислительные реакции пентозофосфатного пути (см. раздел 7).

    В состав молекулы гемоглобина входят 4 одинаковые гемовые группы. Гем представляет собой порфирин, содержащий центрально расположенный ион Fe 2+ . Является производным порфина, который представляет собой конденсированную систему из 4 пирролов, соединенных между собой метиновыми мостиками (-СН=). В зависимости от строения заместителей в порфине различают несколько разновидностей гемов.

      гем IX – наиболее распространенная разновидность гема. Производным порфина в нем является протопорфирин IX (1,3,5,8 – тетраметил-2,4 – дивинил – 6, 7 – дипропионовокислый порфин);

      гем а (формилпорфирин). Гем а вместо метильной группы содержит формильный остаток в восьмом положении (-СНО) и вместо одной винильной группы (во втором положении) изопреноидную цепь. Гем а входит в состав цитохромоксидазы;

      гем с, в котором с винильными (-СН=СН 2) группами в положениях 2 и 4 связаны остатки цистеина. Входит в состав цитохрома С;

      гем  представляет собой железодигидропорфирин 4.

    Гем является простетической группой не только гемоглобина и его производных, но и миоглобина, каталазы, пероксидазы, цитохромов, фермента триптофанпироллазы, катализируещего окисление троптофана в формилкинуренин.

    Координационное число для атомов железа равно 6. В геме железо связано двумя ковалентными связями с атомами азота двух пиррольных колец и двумя координационными связями с атомами азота остальных пиррольных колец. Пятая и шестая координационные связи железа распределяются по-разному, в зависимости от того в состав какой белковой молекулы входит гем, в зависимости от её функций. Так, например, в цитохромах 5 и 6 координационные связи железа соединены с остатками гистидина и метионина. Такое расположение гема в цитохромах, необходимо для выполнения их специфической функции – переноса электронов в дыхательной цепи. Переходы Fe 3+ + е= Fe 2+ ; Fe 2+ -е= Fe 3+ создают возможность перебрасывать электроны от одного цитохрома к другому.

    Рассмотрим подробнее расположение гема в составе гемоглобина (миоглобина). Гем расположен в щели между спиралями Е и F; его полярные пропионатные группы ориентированы к поверхности глобулы, а остальная часть находится внутри структуры и окружена не полярными остатками, за исключением His F8 и His F7. Пятое координационное положение атома железа занято атомом азота гетероциклического кольца проксимального гистидина His F8. Дистальный гистидин (His F7) расположен по другую сторону гемого кольца, почти напротив His F8, но шестое координационное положение атома железа остаётся свободным. Из двух не использованных координационных связей одна идет на соединение с белком, а вторая – на соединение с различными лигандами (физиологическими – кислород, вода и чужеродными – диоксид углерода, цианид и т.д.).

    Производные гемоглобина

    Гемоглобин взаимодействует с различными лигандами, для этого предназначена шестая координационная связь железа в геме. К производными гемоглобина относят:

      оксигемоглобин HbО 2 – соединение молекулярного кислорода с гемоглобином. Чтобы подчеркнуть тот факт, что валентность железа при этом связывании не меняется, реакцию называют не окислением, а оксигенацией; обратный процесс называется дезоксигенацией. Когда хотят специально отметить, что гемоглобин не связан с кислородом, его называют дезоксигемоглобином;

      карбоксигемоглобин HbСО. Валентность железа в результате присоединения угарного газа (моноксида углерода – СО) также остается II. СО связывается с гемом примерно в двести раз прочнее, чем связь гем- О 2 . Не большая часть молекул гемоглобина (1%) в нормальных условиях связывает СО. У курильщиков же к вечеру эта величина достигает 20%. При отравлении монооксидом углерода наступает смерть от удушья, недостаточного снабжения тканей кислородом.

      метгемоглобин (HbОН). Он не связывает молекулярный кислород. Атом железа в его молекуле находится в степени окисления 3+. Метгемоглобин образуется при воздействии на гемоглобин окислителей (оксидов азота, метиленового синего, хлоратов). В крови человека метгемоглобин находится в незначительных количествах, но при некоторых заболеваниях (например, нарушение синтеза ГЛ-6-фосфатДГ), либо при отравлении окислителями его содержание возрастает, что может быть причиной летального исхода, так как метгемоглобин не способен к переносу кислорода от легких к тканям;

      цианметгемоглобин (HbСN) – метгемоглобин оказывает и положительное действие. Он связывает СN - с образованием цианметгемоглобина и спасает организм от смертельного действия цианидов. Поэтому для лечения отравлений цианидами применяют метгемоглобинообразователи (тот же нитрит Na);

      карбгемоглобин образуется, когда гемоглобин связывается с СО 2 . Однако СО 2 присоединяется не к гему, а к NН 2 – группам глобина:

    HbNH 2 + CO 2 = HbNHCOO - + H +

    Причем дезоксигемоглобин связывает больше СО 2 , чем оксигемоглобин. Образование карбгемоглобина используется для выведения СО 2 из тканей к легким. Этим путем выводится 10-15% СО 2 .

    Вопрос 7. Механизм насыщения гемоглобина кислородом

    За счет шестой координационной связи к атому железа присоединяется молекула кислорода с образованием оксигемоглобина. Пиррольные кольца гема расположены в одной плоскости в то время как атом железа несколько выступает из этой плоскости. Присоединение кислорода «выпрямляет» молекулу гема: железо перемещается в плоскость пиррольных колец на 0,06 нм, так как диаметр координационной сферы атома железа уменьшается. Гемоглобин связывает 4 молекулы кислорода (по одной молекуле на гем в каждой субъединице). Оксигенерирование сопровождается значительными конформационными изменениями в гемоглобине. Перемещаясь в плоскость пиррольных колец, Fe, соединенное в 5 координационном положении с остатком HisF8 «тянет» пептидную цепь на себя. Происходит изменение конформации этой цепи и связанных с ней других полипептидных цепей, поскольку один протомер соединен многими связями с другими протомерами. Это явление называют коопреативностью изменения конформации протомеров. Изменения конформации таковы, что первоначальное связывание О 2 с одной субъединицей ускоряет связывание молекул кислорода с отстальными субъединицами. Это явление известно как гомотропный положительный кооперативный эффект (гомотропный, потому что участвует только кислород). Именно это обуславливает сигмовидный характер кривой насыщения гемоглобина кислородом. Четвертая молекула кислорода присоединяется к гемоглобину в 300 раз легче, чем первая молекула. Чтобы составить себе более ясное представление об этом механизме, целесообразно рассматривать структуру гемоглобина в виде двух гетеродимеров, образованных  и  - субъединицами:  1  1 и  2  2 . Незначительный сдвиг атома железа приводит к тому, что одна /  пара субъединиц, поворачивается относительно другой /  - пары. При этом между субъединицами разрушаются нековалентные связи, обусловленные электростатическими взаимодействиями. Один набор связей между димерами замещается на другой, происходит их относительная ротация.

    Четвертичная структура частично оксигенерированного гемоглобина описывается как Т-состояние (от англ. Taut –напряжение), полностью оксигенерированному гемоглобину (HbО 2) отвечает R – состояние (relaxed- релаксирование). Состояние характеризуется меньшим сродством к кислороду, вероятности перехода из Т- формы в R-форму повышается по мере последовательного оксигенерирования каждой из 4 гемогрупп. Солевые мостики (нековалентные связи) по мере присоединения кислорода разрушаются, увеличивая вероятность перехода из Т – формы в R- форму (состояние высокого сродства).

    Гемограмма

    Гемограмма (греч. haima кровь + gramma запись) – клинический анализ крови. Включает данные о количестве всех форменных элементов крови, их морфологических особенностях, СОЭ, содержании гемоглобина, цветном показателе, гематокритном числе, соотношении различных видов лейкоцитов и др.

    Кровь для исследования берут через 1 ч после легкого завтраки из пальца (мочки уха или пятки у новорожденных и детей раннего возраста). Место прокола обрабатывают ватным тампоном, смоченным 70% этиловым спиртом. Прокол кожи проводят стандартным копьем-скарификатором разового пользования. Кровь должна вытекать свободно. Можно использовать кровь, взятую из вены.

    При сгущении крови возможно увеличение концентраций гемоглобина, при увеличении объема плазмы крови – снижение.

    Определение количества форменных элементов крови проводят в счетной камере Горяева. Высота камеры, площадь сетки и ее делений, разведение взятой для исследования крови позволяют установить количество форменных элементов в определенном объеме крови. Камера Горяева может быть заменена автоматическими счетчиками. Принцип их работы основан на различной электропроводности взвешенных частиц в жидкости.

    Норма количества эритроцитов в 1 л крови

    4,0–5,0×10 12

    3,7–4,7×10 12

    Уменьшение числа эритроцитов (эритроцитопения) характерно для анемий: увеличение их наблюдается при гипоксии, врожденных пороках сердца, сердечно-сосудистой недостаточности, эритремии и др.

    Количество тромбоцитов подсчитывают различными методами (в мазках крови, в камере Горяева, при помощи автоматических счетчиков). У взрослых количество тромбоцитов составляет 180,0–320,0×10 9 /л. Увеличение числа тромбоцитов отмечается при злокачественных новообразованиях, хроническом миелолейкозе, остеомиелофиброзе и др. Пониженное содержание тромбоцитов может быть симптомом различных заболеваний, например тромбоцитопенической пурпуры. Наиболее часто в клинической практике встречаются иммунные тромбоцитопении. Количество ретикулоцитов подсчитывают в мазках крови или в камере Горяева. У взрослых их содержание составляет 2–10 ‰ .

    Нормальное количество лейкоцитов у взрослых колеблется от 4,0 до 9,0×10 9 . У детей оно несколько больше. Содержание лейкоцитов ниже 4,0×10 9 обозначается термином «лейкопения», более 10,0×10 9 – термином «лейкоцитоз». Количество лейкоцитов у здорового человека не является постоянным и может значительно колебаться в течение суток (суточные биоритмы). Амплитуда колебаний зависит от возраста, пола, конституциональных особенностей, условий жизни, физической нагрузки и др. Развитие лейкопении обусловлено несколькими механизмами, например снижением продукции лейкоцитов костным мозгом, что имеет место при гипопластической и железодефицитной анемии. Лейкоцитоз обычно связан с увеличением количества нейтрофилов, чище обусловлен повышением продукции лейкоцитов или их перераспределением в сосудистом русле; наблюдается при многих состояниях организма, например, при эмоциональном или физическом напряжении, при ряде инфекционных болезней, интоксикациях и др. В норме лейкоциты крови взрослого человека представлены различными формами, которые распределяются в окрашенных препаратах в следующих соотношениях:

    Определение количественного соотношения между отдельными формами лейкоцитов (лейкоцитарная формула) имеет клиническое значение. Наиболее часто наблюдается так называемый сдвиг в лейкоцитарной формуле влево. Он характеризуется появлением незрелых форм лейкоцитов (палочкоядерных, метамиелоцитов, миелоцитов, бластов и др.). Наблюдается при воспалительных процессах различной этиологии, лейкозах.

    Морфологическую картину форменных элементов исследуют в окрашенных мазках крови под микроскопом. Существует несколько способов окраски мазков крови, основанных на химическом сродстве элементов клетки к определенным анилиновым краскам. Так, цитоплазматические включения метахроматически окрашиваются органическим красителем азуром в ярко-пурпурный цвет (азурофилия). В окрашенных мазках крови определяют величину лейкоцитов, лимфоцитов, эритроцитов (микроциты, макроциты и мегалоциты), их форму, окраску, например насыщенность эритроцита гемоглобином (цветной показатель), цвет цитоплазмы лейкоцитов, лимфоцитов. Низкий цветной показатель свидетельствует о гипохромии, он наблюдается при анемиях, обусловленных дефицитом железа в эритроцитах или неиспользованием его для синтеза гемоглобина. Высокий цветной показатель говорит о гиперхромии при анемиях, вызванных недостаточностью витамина В 12 и (или) фолиевой кислоты, гемолизом.

    Скорость оседания эритроцитов (СОЭ) определяется методом Панченкова, основанным на свойстве эритроцитов оседать при помещении несвернувшейся крови в вертикально расположенную пипетку. СОЭ зависит от количества эритроцитов, их величины. Объема и способности к образованию агломератов, от температуры окружающей среды, количества белков плазмы крови и соотношения их фракций. Повышенная СОЭ может быть при инфекционных, иммунопатологических, воспалительных, некротических и опухолевых процессах. Наибольшее увеличение СОЭ наблюдается при синтезе патологического белка, что характерно для миеломной болезни, макроглобулинемии Вальденстрема, болезни легких и тяжелых цепей, а также при гиперфибриногенемии. Следует иметь в виду, что снижение содержания фибриногена в крови может компенсировать изменение соотношения альбуминов и глобулинов, вследствие чего СОЭ остается нормальной или замедляется. При острых инфекционных болезнях (например, при гриппе, ангине) наиболее высокая СОЭ возможна в период снижения температуры тела, при обратном развитии процесса. Значительно реже отмечается замедленная СОЭ, например при эритремии, вторичных эритроцитозах, повышении концентрации желчных кислот и желчных пигментов в крови, гемолизе, кровотечениях и др.

    Об общем объеме эритроцитов дает представление гематокритное число – объемное соотношение форменных элементов крови и плазмы.

    Нормальное гематокритное число

    Его определяют с помощью гематокрита, представляющего собой два коротких стеклянных градуированных капилляра в специальной насадке. Гематокритное число зависит от объема эритроцитов в кровяном русле, вязкости крови, скорости кровотока и других факторов. Оно повышается при обезвоживании организма, тиреотоксикозе, сахарном диабете, кишечной непроходимости, беременности и др. Низкое гематокритное число наблюдается при кровотечениях, сердечной и почечной недостаточности, голодании, сепсисе.

    Показатели гемограммы позволяют обычно ориентироваться в особенностях течения патологического процесса. Так, небольшой нейтрофильный лейкоцитоз возможен при легком течении инфекционных болезней и гнойных процессов; об утяжелении свидетельствует нейтрофильный гиперлейкоцитоз. Данные гемограммы используют для контроля за действием некоторых лекарственных препаратов. Так, регулярное определение содержания гемоглобина эритроцитов необходимо для установления режима приема препаратов железа у больных железодефицитной анемией, числа лейкоцитов и тромбоцитов – при лечении лейкозов цитостатическими препаратами.

    Строение и функции гемоглобина

    Гемоглобин – главный компонент эритроцита и основной дыхательный пигмент, обеспечивает перенос кислорода (О 2 ) из легких в ткани и углекислого газа (СО 2 ) из тканей в легкие. Кроме того, он играет существенную роль в поддержании кислотно-основного равновесия крови. Подсчитано, что в одном эритроците содержится ~340 000 000 молекул гемоглобина, каждая из которых состоит примерно из 103 атомов. В крови человека в среднем содержится ~750 г гемоглобина.

    Гемоглобин представляет собой сложный белок, относящийся к группе гемопротеинов белковый компонент в котором представлен глобином, небелковый – четырьмя одинаковыми железопорфириновыми соединениями, которые называются гемами. Атом железа (II), расположенный в центре гема, придает крови характерный красный цвет (см. рис. 1 ). Наиболее характерным свойством гемоглобина является обратимое присоединение газовО 2 , СО 2 и др.

    Рис. 1. Структура гемоглобина

    Было установлено, что гем приобретает способность переносить О 2 лишь при условии, что его окружает и защищает специфический белок – глобин (сам по себе гем не связывает кислород). Обычно при соединенииО 2 с железом (Fe ) один или более электронов необратимо переходят с атомовFe на атомыО 2 . Иными словами, происходит химическая реакция. Экспериментально было доказано, что миоглобин и гемоглобин обладают уникальной способностью обратимо связыватьO 2 без окисления гемовогоFe 2+ в Fe 3+ .

    Таким образом, процесс дыхания, который на первый взгляд кажется столь простым, на самом деле осуществляется благодаря взаимодействию многих видов атомов в гигантских молекулах чрезвычайной сложности.

    В крови гемоглобин существует, по крайней мере, в четырех формах: оксигемоглобин, дезоксигемоглобин, карбоксигемоглобин, метгемоглобин. В эритроцитах молекулярные формы гемоглобина способны к взаимопревращению, их соотношение определено индивидуальными особенностями организма.

    Как и любой другой белок, гемоглобин имеет определенный набор характеристик, по которым его можно отличить от других белковых и небелковых веществ в растворе. К таким характеристикам относятся молекулярная масса, аминокислотный состав, электрический заряд, химические свойства.

    На практике чаще всего используются электролитные свойства гемоглобина (на этом основаны кондуктивные методы его исследования) и способность гема присоединять различные химические группы, приводящие к изменению валентности Fe и окраски раствора (калориметрические методы). Однако в многочисленных исследованиях показано, что результат кондуктивных методов определения гемоглобина зависит от электролитного состава крови, это делает затруднительным применение такого исследования в неотложной медицине.

    Строение и функции костного мозга

    Костный мозг (medulla ossium) – центральный орган кроветворения, расположенный в губчатом веществе костей и костно-мозговых полостях. Выполняет также функции биологической защиты организма и костеобразования.

    У человека костный мозг (КМ) впервые появляется на 2-м месяце эмбриогенеза в закладке ключицы, на 3-м месяце – в лопатках, ребрах, грудине, позвонках и др. На 5-м месяце эмбриогенеза костный мозг функционирует как основной кроветворный орган, обеспечивая дифференцированное костномозговое кроветворение с элементами гранулоцитарного, эритроцитарного и мегакарциоцитарного рядов.

    В организме взрослого человека различают красный КМ, представленный деятельной кроветворной тканью, и желтый, состоящий из жировых клеток. Красный КМ заполняет промежутки между костными перекладинами губчатого вещества плоских костей и эпифизов трубчатых костей. Он имеет темно-красный цвет и полужидкую консистенцию, состоит из стромы и клеток кроветворной ткани. Строма образована ретикулярной тканью, она представлена фибробластами и эндотелиальными клетками; содержит большое количество кровеносных сосудов, в основном широких тонкостенных синусоидных капилляров. Строма принимает участие в развитии и жизнедеятельности кости. В промежутках между структурами стромы находятся клетки, участвующие в процессах кроветворения стволовые клетки, клетки-предшественники, эритробласты, миелобласты, монобласты, мегакариобласты, промиелоциты, миелоциты, метамиелоциты, мегакариоциты, макрофаги и зрелые форменные элементы крови.

    Формирующиеся клетки крови в красном КМ располагаются в виде островков. При этом эритробласты окружают макрофаг, содержащий железо, необходимое для построения геминовой части гемоглобина. В процессе созревания зернистые лейкоциты (гранулоциты) депонируются в красном КМ, поэтому их содержание в 3 раза больше, чем эритрокариоцитов. Мегакариоциты тесно связаны с синусоидными капиллярами; часть их цитоплазмы проникает в просвет кровеносного сосуда. Отделяющиеся фрагменты цитоплазмы в виде тромбоцитов переходят в кровяное русло. Формирующиеся лимфоциты плотно окружают кровеносные сосуды. В красном костном мозгу развиваются предшественники лимфоцитов и В-лимфоциты. В норме через стенку кровеносных сосудов КМ проникают только созревшие форменные элементы крови, поэтому появление в кровяном русле незрелых форм свидетельствует об изменении функции или повреждении костномозгового барьера. КМ занимает одно из первых мест в организме по своим репродуктивным свойствам. В среднем у человека в день образуется:

    В детском возрасте (после 4 лет) красный КМ постепенно замещается жировыми клетками. К 25 годам диафизы трубчатых костей целиком заполняются желтым мозгом, в плоских костях он занимает около 50% объема КМ. Желтый КМ в норме не выполняет кроветворной функции, но при больших кровопотерях в нем появляются очаги кроветворения. С возрастом объем и масса КМ изменяются. Если у новорожденных на его долю приходится примерно 1,4% массы тела, то у взрослого человека – 4,6%.

    Костный мозг участвует также в разрушении эритроцитов, реутилизации железа, синтезе гемоглобина, служит местом накопления резервных липидов. Поскольку в нем содержатся лимфоциты и мононуклеарные фагоциты, он принимает участие в реакции иммунного ответа.

    Деятельность КМ как саморегулирующейся системы контролируется по принципу обратной связи (число зрелых клеток крови влияет на интенсивность их образования). Эта регуляция обеспечивается сложным комплексом межклеточных и гуморальных (поэтины, лимфокины и монокины) воздействий. Предполагается, что основным фактором, регулирующим клеточный гомеостаз, является количество клеток крови. В норме по мере старения клеток они удаляются и на их место приходят другие. При экстремальных состояниях (например, кровотечении, гемолизе) изменяется концентрация клеток, срабатывает обратная связь; в дальнейшем процесс зависит от динамической устойчивости системы и силы воздействия вредных факторов.

    Под воздействием эндогенных и экзогенных факторов происходит нарушение кроветворной функции КМ. Нередко патологические изменения, происходящие в КМ, особенно в начале какого-либо заболевания, не сказываются на показателях, характеризующих состояние крови. Возможны уменьшение числа клеточных элементов КМ (гипоплазия) или их увеличение (гиперплазия). При гипоплазии КМ уменьшается количество миелокариоцитов, отмечается цитопения, нередко жировая ткань преобладает над миелоидной. Гипоплазия кроветворения может быть самостоятельным заболеванием (например, апластическая анемия). В редких случаях она сопровождает такие заболевания, как хронический гепатит, злокачественные новообразования, встречается при некоторых формах миелофиброза, мраморной болезни, аутоиммунных заболеваниях. При некоторых заболеваниях уменьшается количество клеток одного ряда, например красного (парциальная красноклеточная аплазия), или клеток гранулоцитарного ряда (агранулоцитоз). При ряде патологических состояний, кроме гипоплазии кроветворения, возможен неэффективный гемопоэз, для которого характерны нарушение созревания и выхода клеток гемопоэза в кровь и их интрамедуллярная гибель.

    Гиперплазия КМ имеет место при различных лейкозах. Так, при остром лейкозе появляются незрелые (бластные) клетки; при хроническом лейкозе возрастает число морфологически зрелых клеток, например лимфоцитов при лимфолейкозе, эритроцитов при эритремии, гранулоцитов при хроническом миелолейкозе. Гиперплазия клеток эритроцитарного ряда характерна также для гемолитических анемий ,В 12 -дефицитной анемии .

    Биологическая химия Лелевич Владимир Валерьянович

    Гемоглобин человека

    Гемоглобин человека

    Гемоглобин – сложный железосодержащий белок, относится к классу гемопротеинов. Выполняет две важные функции:

    1. перенос кислорода из легких к периферическим тканям;

    2. участие в переносе СО 2 и протонов из периферических тканей в легкие.

    Производные гемоглобина

    Молекула гемоглобина взаимодействует с различными лигандами, образуя производные гемоглобина.

    1. Дезоксигемоглобин – ННb – не связанный с кислородом и содержащий гем с двухвалетным железом Fe 2+ .

    2. Оксигемоглобин – ННbO 2 – полностью оксигенированный гемоглобин, связанный с четырьмя молекулами кислорода.

    3. Карбгемоглобин – ННbCO 2 – гемоглобин, связанный с СО 2 . Выполняет функцию выведения СО 2 из тканей к легким. Соединение нестойкое, легко диссоциирует в легочных капиллярах. Этим путем выводится до 10–15% СО2.

    4. Карбоксигемоглобин – ННbСО – образуется при отравлении оксидом углерода (II). Сродство гемоглобина к СО примерно в 300 раз выше, чем к кислороду, при этом гемоглобин теряет способность связывать кислород и наступает смерть от удушья.

    5. Метгемоглобин – MetHb – образуется при действии окислителей (нитрит натрия, нитробензол). Содержит железо в трехвалентной форме Fe 3+ и теряет способность к переносу кислорода. В норме образуется небольшое количество метгемоглобина – примерно 0,5 % в сутки.

    Варианты гемоглобина в онтогенезе

    Количество и состав фракций гемоглобина изменяется в процессе онтогенеза. Все гемоглобины представляют собой тетрамеры, построенные из разного набора субъединиц (?, ?, ?, ?) и преимущественно образуются на разных этапах развития организма человека – от эмбрионального до взрослого состояния. Различают следующие физиологические типы гемоглобинов: примитивный гемоглобин НbР, фетальный гемоглобин HbF (fetus – плод), гемоглобин взрослых HbA, HbA 2 , HbA 3 (adultus – взрослый).

    Примитивный гемоглобин – синтезируется в эмбриональном желточном мешке через несколько недель после оплодотворения. Состоит из двух?- и двух?-цепей (2?, 2?). Через две недели после формирования печени плода в ней начинает синтезироваться HbF, который к шести месяцам полностью замещает НbР.

    Фетальный гемоглобин – синтезируется в печени и костном мозге плода до периода его рождения. Состоит из двух?- и двух?-цепей (2?, 2?). Характеризуется более высоким сродством к кислороду и обеспечивает эффективную доставку кислорода к эмбриону из системы кровообращения матери. HbF является главным типом гемоглобина плода. Кровь новорожденного содержит до 80% HbF, но к концу 1-го года жизни он почти целиком заменяется на HbA. В крови взрослого человека присутствует в минимальном количестве – до 1,5% от общего количества гемоглобина.

    Гемоглобин А – основной гемоглобин взрослого человека (96 % от общего количества). Начинает синтезироваться в клетках костного мозга уже на 8-м месяце развития плода. HbA состоит из двух?- и двух?-цепей.

    Минорные гемоглобины:

    1. HbA2 - 2? 2?, в крови взрослого человека примерно 2,6 % HbA2. Обладает большим сродством к кислороду.

    2. HbA3 - 2? 2?, однако имеются изменения в строении?-цепей по сравнению с HbA. Появляется в крови в небольших количествах при старении.

    Гемоглобинопатии

    Все структурные аномалии белковой части гемоглобина называют гемоглобинозами.

    Различают:

    1. гемоглобинопатии;

    2. талассемии.

    Гемоглобинопатии – наследственные изменения структуры какой-либо цепи нормального гемоглобина вследствие точечных мутаций генов. Известно около 300 вариантов HbA, имеющих в первичной структуре?- или?-цепи незначительные изменения. Некоторые из них практически не влияют на функции белка и здоровье человека, другие – вызывают значительные нарушения функции HbA и развитие заболеваний различной степени тяжести.

    В аномальных гемоглобинах изменения могут затрагивать аминокислоты:

    1. находящиеся на поверхности белка;

    2. участвующие в формировании активного центра;

    3. аминокислоты, замена которых нарушает трехмерную конформацию молекулы;

    4. аминокислоты, замена которых изменяет четвертичную структуру белка и его регуляторные свойства.

    Аномальные гемоглобины отличаются от HbA по первичной структуре, форме, величине заряда. При этом изменяются такие свойства как сродство к кислороду, растворимость, устойчивость к денатурации и др.

    Примеры.

    1. Серповидноклеточная анемия. Наследственное заболевание, связанное с заменой глутаминовой кислоты в 6-м положении (с N-конца) на валин в?-цепях молекулы гемоглобина S. Растворимость дезоксигемоглобина S значительно снижена. Его молекулы начинают «слипаться», образуя волокнистый осадок, который деформирует эритроцит, придавая ему форму серпа (полумесяца). Такие эритроциты плохо проходят через капилляры тканей, закупоривают сосуды и создают локальную гипоксию. Они быстро разрушаются и возникает гемолитическая анемия. Дети, гомозиготные по мутантному гену, часто умирают в раннем возрасте. Болезнь распространена в странах Южной Америки, Африки и Юго-Восточной Азии.

    2. Гемоглобин М – в результате мутации в гене происходит замена в?- или?-цепи гистидина (в 7-м или 8-м положении) на тирозин. В результате этого Fe 2+ окисляется в Fe 3+ и образуется метгемоглобин, не способный связывать кислород. Развивается цианоз и гипоксия тканей.

    Талассемии

    Талассемии – наследственные заболевания, связанные с нарушением синтеза?- или?-цепей.

    Талассемии развиваются в результате снижения синтеза?-цепей. Проявляется после рождения, при этом в крови наряду с НbА появляется до 15 % НbА2 и 15–60 % HbF. Болезнь характеризуется гиперплазией и разрушением костного мозга, поражением печени, селезенки и сопровождается гемолитической анемией.

    Талассемии возникают при нарушении синтеза?-цепей. При полном отсутствии?-цепей наступает внутриутробная гибель плода, так как не образуется HbF, а тетрамеры? 4 обладают высоким сродством к кислороду и не способны выполнять транспортную функцию, что ведет к развитию тканевой гипоксии и к смерти вскоре после рождения.

    Из книги Удивительная биология автора Дроздова И В

    В чем же феномен человека? Рассмотрим, как на высшем этапе конкретно материализуется та многоуровневая информационная структура, к которой пришло все живое после миллионнолетней эволюции. Речь пойдет об асимметрии больших полушарий человеческого мозга, а также о

    Из книги Новая наука о жизни автора Шелдрейк Руперт

    11.4. Поведение человека Высшие животные часто ведут себя более гибко, чем низшие животные. Однако эта гибкость ограничена ранними стадиями поведенческого ряда, и особенно начальной фазой, обусловленной потребностью в пище; более поздние стадии, и в частности акт

    Из книги Наше постчеловеческое будущее [Последствия биотехнологической революции] автора Фукуяма Фрэнсис

    7 ПРАВА ЧЕЛОВЕКА Такие термины, как "святость [прав]", напоминают мне о правах животных. Кто дал право собаке? Само слово "право" становится очень опасным. У нас есть права женщин, права детей; и так далее до бесконечности. Потом есть права саламандры и права лягушки. Ситуация

    Из книги Путешествие в прошлое автора Голосницкий Лев Петрович

    Биотехнология человека Регламентация для биотехнологии человека разработана гораздо слабее, чем для сельскохозяйственной биотехнологии, в основном потому, что генетическая модификация людей еще не появилась в отличие от модификации растений и животных. Частично для

    Из книги Геном человека: Энциклопедия, написанная четырьмя буквами автора

    Развитие человека Зверям нужны сильные челюсти и крупные зубы, чтобы хватать пастью добычу, дробить кости, разжёвывать жёсткую пищу.Зубам же первобытного человека помогали руки. С помощью рук он охотился на животных, дробил кости, чтобы достать из них костный мозг,

    Из книги Геном человека [Энциклопедия, написанная четырьмя буквами] автора Тарантул Вячеслав Залманович

    Приложение 3. ВСЕОБЩАЯ ДЕКЛАРАЦИЯ О ГЕНОМЕ ЧЕЛОВЕКА И ПРАВАХ ЧЕЛОВЕКА 3 декабря 1997 г.ВСЕОБЩАЯ ДЕКЛАРАЦИЯ О ГЕНОМЕ ЧЕЛОВЕКА И ПРАВАХ ЧЕЛОВЕКА Генеральная конференция,напоминая, что в преамбуле Устава ЮНЕСКО провозглашаются «демократические принципы уважения достоинства

    Из книги Биология [Полный справочник для подготовки к ЕГЭ] автора Лернер Георгий Исаакович

    Приложение 3. ВСЕОБЩАЯ ДЕКЛАРАЦИЯ О ГЕНОМЕ ЧЕЛОВЕКА И ПРАВАХ ЧЕЛОВЕКА 3 декабря 1997 г.ВСЕОБЩАЯ ДЕКЛАРАЦИЯ О ГЕНОМЕ ЧЕЛОВЕКА И ПРАВАХ ЧЕЛОВЕКАГенеральная конференция,напоминая, что в преамбуле Устава ЮНЕСКО провозглашаются «демократические принципы уважения достоинства

    Из книги Металлы, которые всегда с тобой автора Терлецкий Ефим Давидович

    Из книги Биология. Общая биология. 10 класс. Базовый уровень автора

    Из книги Биология. Общая биология. 11 класс. Базовый уровень автора Сивоглазов Владислав Иванович

    Гемоглобин и Шерлок Холмс Впервые гемоглобин был обнаружен в 1839 году немецким исследователем Р. Хюнефельдом в крови обыкновенного дождевого червя.Спустя 12 лет другой немецкий ученый О. Функ предложил метод получения устойчивых кристаллов гемоглобина, или, как их тогда

    Из книги Поведение: эволюционный подход автора Курчанов Николай Анатольевич

    И снова гемоглобин и Шерлок Холмс Мы говорим: кислород - окислитель. Но союз кислорода и двухвалентного железа в гемоглобине просто невероятное исключение. Здесь никакого окисления не происходит, так как железо сохраняет свою валентность. Недаром английский физиолог,

    Из книги Антропология [Учебное пособие] автора Хасанова Галия Булатовна

    Гемоглобин под рентгеном Окончательная разгадка строения молекул гемоглобина и миоглобина связана с именами известных учёных Макса Перутца и Джона Кендрю, начинавших свою деятельность в знаменитой Кавендишской лаборатории Кэмбриджского. университета в Англии. Именно

    Из книги автора

    Таблица 7. Гены, принимающие участие в образовании и функционировании ряда клеток, тканей и органов человека (по данным проекта «Геном человека» на

    Из книги автора

    19. Эволюция человека Вспомните!Перечислите основные факторы эволюции человека. Какие из них являются общими для эволюции всех живых организмов?Изучение эволюции человека главным образом основано на исследовании ископаемых остатков.Предшественники человека. В самом

    Из книги автора

    3.5. Этология человека Становление этологии человека проходило в русле идей общей этологии. Сразу отметим, что концепция инстинктивного поведения не встретила понимания общества первой половины XX в. Не только теоретические разногласия породили конфронтацию с этологией.